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Abstract
A dynamical picture of phylogenetic evolution is given in terms of Markov
models on a state space, comprising joint probability distributions for character
types of taxonomic classes. Phylogenetic branching is a process which
augments the number of taxa under consideration, and hence the rank of
the underlying joint probability state tensor. We point out the combinatorial
necessity for a second-quantized, or Fock space setting, incorporating discrete
counting labels for taxa and character types, to allow for a description in
the number basis. Rate operators describing both time evolution without
branching, and also phylogenetic branching events, are identified. A detailed
development of these ideas is given, using standard transcriptions from the
microscopic formulation of non-equilibrium reaction–diffusion or birth–death
processes. These give the relations between stochastic rate matrices, the matrix
elements of the corresponding evolution operators representing them, and the
integral kernels needed to implement these as path integrals. The ‘free’ theory
(without branching) is solved, and the correct trilinear ‘interaction’ terms
(representing branching events) are presented. The full model is developed in
perturbation theory via the derivation of explicit Feynman rules which establish
that the probabilities (pattern frequencies of leaf colourations) arising as matrix
elements of the time evolution operator are identical with those computed via
the standard analysis. Simple examples (phylogenetic trees with two or three
leaves), are discussed in detail. Further implications for the work are briefly
considered including the role of time reparametrization covariance.
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1. Introduction and background

The use of Markov models of change to taxonomic character probability distributions is a
standard technique for describing mutations, and for inferring ancestral relationships between
taxa. A general stochastic framework for phylogenetic branching models is as follows. By
assumption, different ‘taxonomic units’ are identified, and classified by a set of defining
characteristics: based on morphological features for example, or on sequence data for a
particular gene or protein say. To each taxon is ascribed a probability density on the set of
characters, and it is the task of phylogenetic reconstruction to infer ancestral relationships
within a group of taxa, given observed pattern frequencies for characters amongst the taxa
(definitions are given later in the text). In such phylogenetic reconstruction, the Markov
chain model describing the stochastic evolution of characters is extended appropriately to
encompass ‘branching’ where the number of taxa is augmented as new taxonomic types evolve
(for example, by speciation or gene duplication), from an initial single progenitor, through
to the final number of types under study. For details of the subject, including overviews of
applications, current problems and new directions, we refer to recent textbooks, for example
[9, 21].

In recent work [2, 10, 23, 24] it has been pointed out that a fruitful approach to
phylogenetic analysis is afforded by taking the formal perspective of multilinear tensor algebra
familiar from physical systems. For example, in the analysis of symmetry properties (of
the Markov rate matrix, and of the branching process) it is natural to consider continuous
Lie transformation groups acting on the tensor spaces, and the associated representation
theory [23]. Furthermore, a remarkable analogy between branching processes (where the
technical constraint of local conditional independence [21] is imposed) and state entanglement
in quantum physics has been noted [24]. In particular, for two characters (equivalent to single
qubit (2-state) systems in quantum physics) the well-known log det distance measure for two
taxa is essentially the concurrence (for two qubits, related to the von Neumann entropy of
a partial density operator); equally the tangle (an entanglement measure for three qubits)
has been proposed as a useful measure of distance for three taxa in the two-character case,
and the analysis of its properties in the phylogenetic context has been initiated [24, 25].
Further applications of classical invariant theory for phylogenetic analysis are developed
in [10].

In the letter [2] it was argued that a further useful perspective on phylogenetics, again
inspired by physics, can be gained by interpreting ‘branching’ in the model as a linear operator
which augments the rank of the tensor corresponding to the joint probability distribution of
character types (see also [23, 24]). In order to regard the entire model, including especially
the time development represented by the branching dynamics, in a uniform way, it is natural
to seek a setting in multilinear algebra where the linear space describing state probabilities
for taxa can be lifted to an appropriate free algebra in the sense of tensor products, or ‘Fock
space’ in physical language, so that the linear ‘branching operator’ has a uniform (extended)
domain of definition. Possible interaction terms representing this operator, corresponding to
phylogenetic branching events, can then readily be implemented in the language of second
quantization as shown in [2]. Although formal, the transcription to physical language provided
does indeed establish that the entire Markov branching model can be regarded as a standard
Markov chain, but with dynamics on a suitably extended state space—a fact not noted explicitly
before. With closed form expressions for the probabilities in hand, it may also be possible
to investigate these from various analytical viewpoints not accessible hitherto. Moreover, the
physical language is quite flexible, and may suggest useful insights into the models as well as
generalizations.
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In the present paper, a further step towards such analytical investigations and
generalizations is taken, in that the second-quantized framework is transcribed into the
language of path integrals. The dynamical quantities of interest become phylogenetic ‘path’
variables (or ‘classical fields’), defined over a discrete spatial lattice. Time evolution of the
system is developed in perturbation theory, yielding standard probabilities as convolutions of
the appropriate kernel with the initial probability distribution, that is, as matrix elements of
the evolution operator. Similar models of reaction–diffusion or birth–death processes have
been extensively investigated [5, 6, 13, 18] so that there is a wealth of technical experience
within this approach, and possibilities for generalization. These introductory comments are
supplemented in the conclusions by further discussion of possible applications (see summary
below).

The outline of the paper is as follows1. In section 2, we give an analysis of standard
accounts of phylogenetic processes (as used, for example, in analyses for inferring ancestral
trees) to justify our claim that a multilinear tensor description is appropriate, and equivalent
to the usual approach. A standard notation is introduced including the branching or ‘splitting’
operator whose properties are discussed. In section 3 the rate operator and the branching
operator are reformulated as interaction terms in an extended time evolution over Fock space.
Attention is given to the ‘copy space’ needed to identify taxa—both for the observed taxa
(leaves) and ancestral stages (‘internal’ edges of the phylogenetic tree)—and it is argued that
for models with L distinguished leaves, a 2L-dimensional ‘label’ space is needed. Label
summations suggest a natural identification with the ‘momentum’ space for periodic functions
over a hypercubic ‘spatial’ lattice in L dimensions (with 2L nodes in the unit cell), leading to the
possibility of viewing the system dually in ‘position’ space. Section 4 gives a brief pedagogical
review of standard path integral techniques as applied for the analysis of non-equilibrium
reaction–diffusion systems in a microscopic approach. In section 5 these ingredients are
synthesized in a path integral formulation for a ‘free’ phylogenetic system, that is, a collection
of up to L taxa with no phylogenetic association (not necessarily in a stationary state). It
is shown that the abstract dynamics, represented by the evolution kernel of the system in
the path integral approach which is formulated and derived explicitly, does indeed make the
system evolve in a standard way according to a continuous Markov branching process. In
section 6 the question of the branching operator is resumed, and plausible interaction terms
(and corresponding normal kernels) are introduced in the path integral language. It is shown
in simple examples (trees with two or three leaves) that, in both the operator and path integral
language picture, the probabilities arising as matrix elements from the dynamics of the model
are identical to those computed in standard likelihood analyses for inferring phylogenetic
trees. This is borne out in the appendix where formal Feynman rules are derived directly
from perturbation theory, and which can immediately be seen to encode the usual sum over
extended leaf colourations presentations. The conclusions, section 7, reiterate the main points
of the paper and further implications and applications of our work are briefly discussed. In
particular, we comment on the role of the group of time reparametrizations (diffeomorphisms),
in the issue of assigning ‘true’ historical time to phylogenetic events.

2. Tensor methods and stochastic models of phylogenetic branching

It is usual to pose the standard stochastic model of phylogenetics by stating transition
probabilities [3, 9, 12, 21]. It is, however, possible to present the same system in an abstract

1 For the benefit of readers unfamiliar with the subject matter, technicalities in various sections below are treated as
fully as possible.
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multilinear tensor setting. Our philosophy here is similar to that of [17] (see also [4]). In
such a formulation, the evolution of the phylogenetic system is represented by a group action
on a tensor product space, with the branching structure formalized by the introduction of
linear ‘splitting’ operators which increment the rank of the tensor space. As pointed out
in the introduction, this basis-independent description has many advantages, prompting the
investigation of the rich algebraic structure of the system. The door is opened to the discussion
of symmetry groups and subgroups, representation theory and diagonalization, the differential
structure of the rate operators and orbit classes of their action, and the ring structure of invariant
functions (see [10, 23, 24]).

Introduce a set, K, which consists of K discrete elements, conventionally labelled by the
integers {0, 1, 2, . . . , K − 1}. Consider a system consisting of N ‘samples’ to each of which
can be attributed one of K distinct characters. Associated with such a system we have the set
of frequencies

p̂ α := total number of occurrences of character α

N
, α = 0, 1, . . . , K − 1.

In particular, we are interested in the character frequencies occurring in the genome of a given
taxon. The archetypical example is that of the DNA sequence, where the ‘samples’ are sites,
and with four characters {A, G, C, T}, but it is, of course, possible to envisage the use of
other character sets derived from the molecular data, so K is left general in this discussion.
Examples include the amino acids (K = 20), codons (K = 64) or instead of nucleic acid
bases themselves, a binary pyrimidine/purine Y/R classification of them (K = 2). For
practical purposes, the usual practice is to take one particular gene of an organism as being the
representative for the taxon class, although it would be possible to sample a whole genome
or set of genomes and calculate the character frequencies across that set, and take those
frequencies as the representative of that taxon. Practical considerations aside, we proceed to
model the time evolution of these frequencies stochastically.

Introduce a random variable X which takes on values in K. It is necessary to define a set
of time-dependent probabilities which are the theoretical limit

pα(t) := P(X = α, t) = lim
N→∞

p̂ α(t). (2.1)

The stochastic evolution of the probabilities is assumed to satisfy the continuous time Markov
property, that is, the state at time t depends only on the immediately preceding state at time
t − δt say, and hence

pα(t) =
∑
β∈K

P(X = α, t |X = β, t − δt)pβ(t − δt), (2.2)

which in turn implies, assuming linearity and differentiability, that

d

dt
pα(t) =

∑
β∈K

lim
δt→0

P(X = α, t + δt |X = β, t) − δα
β

δt
pβ(t). (2.3)

We define the (time-dependent) rate matrix

Rα
β(t) = lim

δt→0

P(X = α, t + δt |X = β, t) − δα
β

δt
. (2.4)

To preserve reality of the probabilities and the property
∑

α pα(t) = 1 for all t it follows that
R is a real-valued zero column sum matrix. In order to preserve positivity of the probabilities
it must also be the case that for all t

Rα
β(t) � 0, ∀α �= β, Rα

α(t) � 0 (no sum). (2.5)
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For a homogeneous model, the rate matrix is assumed to be time independent, with solution

pα(t) =
∑

β

Mα
β(t)pβ(0), Mα

β(t) = [eRt ]αβ, (2.6)

where exp(Rt) is calculated using matrix multiplication.
Phylogenetics is concerned with deriving the past evolutionary relationships of multiple

taxa. As already mentioned, the modern approach is to compare the genomes of the taxa. An
essential part of the analysis is the ability to align the genomes of distinct taxa successfully.
(The possibility or otherwise of such alignment is not discussed here.) Having aligned the
genomes it is possible to calculate pattern frequencies. These patterns are read off ‘vertically’
across the aligned sequences. The data are then

P̂ α1α2···αL := total number of occurrences of pattern α1α2 · · · αL

N
,

α1, α2, . . . , αL = 0, . . . , K − 1.

Introduce random variables X1, X2, . . . , XL each of which takes on values in the individual
character spaces K, and X = (X1X2 · · ·XL) which takes on values in the L-component
character space K×K× · · · ×K. We model these pattern frequencies by again defining a set
of time-dependent probabilities which are the theoretical limit

P α1α2···αL(t) := P(X = α1α2 · · ·αL, t) = lim
N→∞

P̂ α1α2···αL(t).

The Markov property for this system is expressed as the dependence of P(X = α1α2 · · · αL, t)

only on its values at the immediately preceding time, t − δt say. It is also assumed that the
transition probabilities are conditionally independent across different taxa. This is a standard
assumption [9, 12, 21] and is quite well founded from a biological perspective. Again assuming
differentiability and linearity, a solution is found to be

P α1α2···αL(t) =
∑

β1,β2,...,βL

M1
α1

β1
(t)M2

α2
β2

(t) · · · ML
αL

βL
(t)P β1β2···βL(0). (2.7)

The final part of the model is to introduce the branching. In the case of two taxa diverging
from a common ancestor, considering that at the time of branching the character frequencies
are identical, the correct formula for the pattern frequencies is given by (see, for example,
[16])

P α1α2(t) =
∑
β∈K

M1
α1

β(t)M2
α2

β(t)pβ(0), (2.8)

as will be derived in detail below. This situation can then be iterated for the case of arbitrary
trees (see, for example, [7, 8] as well as the standard texts already cited). Having given the
standard stochastic model of phylogenetics we proceed to abstract the presentation. Introduce
the vector space2 V ∼= C

K , with preferred basis {e0, e1, . . . , eK−1}. We associate the set of
probabilities (2.1) with the unique vector

pα(t) → p(t) =
∑
α∈K

pα(t)eα. (2.9)

Having made this abstraction it is possible to view the stochastic evolution given by (2.6)
as linear group action on V , clearly an appropriate 1-parameter subgroup of GL(K). The
structure of the Markov group is discussed in [14], and from the viewpoint of invariant theory

2 Although the above presentation involves only real numbers, we work over C to allow for the use of more convenient
symmetry adapted bases, or other ways of diagonalizing rate matrices [23]. Of course, measurable quantities are
referred back to the distinguished basis at the end of the analysis.
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in [10, 24, 25]. For the case of phylogenetics, the obvious generalization is to the tensor
product space V ⊗L, with group action as the appropriate subgroup of the direct product group
GL(K)×L. The final step is to describe the branching process upon this tensor product space.

In order to formalize this we introduce the splitting operator δ : V → V ⊗ V . Progress
is made by simply expressing the most general action of δ on the basis elements of V ,

δ · eα =
∑

α,β,γ,

�α
βγ eβ ⊗ eγ , (2.10)

where �α
βγ are an arbitrary set of coefficients. Imposing conditional independence upon

the distinct branches in order to constrain these coefficients, we need only consider initial
probabilities of the form

pα
(λ) = δα

λ , γ = 0, 1, . . . , K − 1. (2.11)

Consider a branching even at time t so that the initial single taxon state a small time before
branching is

p(λ)(t) =
∑

α

pα
(λ)(t)eα =

∑
α

δα
λ eα = eλ. (2.12)

Directly subsequent to the branching event the 2-taxon state is therefore given by

P(λ)(t) = δ · p(λ)(t) =
∑
α,β,γ

δσ
λ �ρρ ′

σ eρ ⊗ eρ ′ . (2.13)

On the other hand, conditional independence leads to

P(X = α1α2, t + δt |X1 = X2 = λ, t)

= P(X1 = α1, t + δt |X1 = λ, t) · P(X2 = α2, t + δt |X2 = λ, t). (2.14)

Using the tensor formalism these transition probabilities can be expressed separately as

P(X1 = α1, t + δt |X1 = λ, t) =
∑

ρ

M1
α1

ρ(δt)p
ρ

(λ)(t),

P(X2 = α2, t + δt |X2 = λ, t) =
∑
ρ ′

M2
α2

ρ ′(δt)p
ρ ′
(λ)(t).

(2.15)

However, from (2.7) we have

P(X = α1α2, t + δt |X1 = X2 = λ, t)

=
∑

ρ,ρ ′,σ

M1
α1

ρ(δt)M2
α2

ρ ′(δt)δσ
λ �ρρ ′

σ .

Implementing (2.14), (2.12) and considering the limit δt → 0 with Mα
ρ(δt) → δα

ρ then
leads to the requirement that

�
ρρ ′
λ = δ

ρ
λ δ

ρ ′
λ , (2.16)

and the definition for the splitting operator in the preferred basis becomes simply

δ · eα = eα ⊗ eα. (2.17)

Using the above notation, we are now in a position to write down formally expressions for
the probabilities on arbitrary trees. As an example, the expression which defines the general
Markov model on the tree (1((23)4)) (or3 (	1((	2	4)	8))) is given by (see figure 1)

P(	1((	2	4)	8)) = (M	1 ⊗ M	2 ⊗ M	4 ⊗ M	8)1 ⊗ δ ⊗ 1(1 ⊗ M	6 ⊗ 1)1 ⊗ δ(1 ⊗ M 	14)δ · p (2.18)

where p is the initial single taxon distribution and the M are arbitrary stochastic operators
(Markov matrices) on the designated edges.

3 In terms of the binary labelling introduced below, this tree is (	1((	2	4)	8)), with the remaining edge assignments
determined additively.
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�1 �2 �4 �8

M�1 M�6

M�14

M�2 M�4 M�8

p

Figure 1. The general Markov model for four taxa with tree (1((23)4)) (or (	1((	2	4)	8)) in terms
of binary edge labelling). The M are arbitrary transition probabilities (Markov matrices) on the
designated edges.

3. Fock space and momentum labels for binary trees

In the previous section, we have presented a description of phylogenetic systems in terms
of a multilinear tensor calculus based on copies of the basic state space V 
 C

K . This
comprises vectors with positive coefficients pα in the distinguished basis, corresponding to
the theoretical probabilities for observation of a particular character α, α = 0, . . . , K − 1;
higher rank tensors P α1α2···αn represent joint probability densities. Moreover, we introduced
a linear operator δ : V → V ⊗ V , again defined by its matrix elements in the distinguished
basis, representing phylogenetic branching viewed dynamically as an event occurring at a
specific time.

In this and the following sections, we wish to argue for a more universal view which is
appropriate for arbitrary trees. Given that branching might occur at various times, this means
that the ‘state space’ might be anything from V (for the root edge of the tree), to V ⊗ V (if
there is only one branching), and so on, up to V ⊗ V ⊗ V ⊗ · · · ⊗ V,L times, if the final
number of taxa (the number of leaves of the tree) is L. The only logical way to encompass all
these possibilities within one description in linear algebra is to adopt as the proper state space,
an appropriate Fock space F associated with V , in this case, for example,

FL = C ⊕ V ⊕ V ⊗ V ⊕ · · · ⊕ V ⊗ V ⊗ · · · ⊗ V

= ⊕L
n=0(⊗nV ). (3.19)

The advantage of this formal change of perspective is that it allows both the normal time
evolution (as described above, the Markov rate operator acting on each copy of V ) and the
branching operator (as described above) δ, or its natural extensions 11 ⊗ 11 ⊗· · ·⊗ δ ⊗· · ·⊗ 11,
simultaneously to be regarded as operators on F .

In physical settings, it is conventional to apply the above construction for the description
of ‘composite’ systems where the state space V corresponds to a single subsystem, and the
tensor products allow for copies of V corresponding to different numbers of subsystems. In
relativistic systems, this is of course the setting for elementary particle interactions, but the
same idea is also appropriate in the non-relativistic case. However, in quantum systems the



9628 P D Jarvis et al

Pauli principle mandates that the general spaces V ⊗ V ⊗ · · · ⊗ V are too big—the individual
subsystems are indistinguishable in that the ordering of individual state vectors in the tensor
product is immaterial (up to a possible sign factor for fermionic systems). This means
that the relevant Fock spaces are technically speaking the linear spaces F +, F− associated,
respectively, with the symmetric (for bosons), or (for fermions) the antisymmetric or exterior
tensor algebras:

F + = C ⊕ V ⊕ V ∨ V ⊕ · · · ⊕ V ∨ V ∨ · · · ∨ V · · · ,
= ⊕∞

n=0(∨nV ),

F− = C ⊕ V ⊕ V ∧ V ⊕ · · · ⊕ V ∧ V ∧ · · · ∧ V,

= ⊕L
n=0(∧nV )

(3.20)

In adopting the machinery of Fock space to the phylogenetic context, the ‘subsystems’
become the individual taxa extant at any particular stage of the branching process, and
the (anti)symmetrization principle would need to be interpreted as saying that all taxa are
equivalent, or that the tensor probability density of rank n is totally symmetric or totally
antisymmetric. Thus for a given choice of observed characters represented by the symmetric
probability density P α1α2···αn , it would be immaterial which taxon (from 1 to n in this case)
carried which character,

P α1α2···αn = P ασ1ασ2···ασn (3.21)

for any permutations σ . In phylogenetic branching, this symmetrization may well be
appropriate for cases where it is suspected that a number of siblings are diverging from a
common origin with equal rate matrices4, but in general, we would certainly wish to be able
to distinguish between taxa.

These considerations imply that the higher rank tensor spaces V ⊗V ⊗· · ·⊗V introduced
above should be regarded technically as products of a number of labelled spaces, for example
for the final L taxon system, V1 ⊗ V2 ⊗ · · · ⊗ VL where each Vn is a distinct copy of
V, Vn 
 V, n = 1, . . . , L. However, since the n taxon spaces required for the system at
earlier times (arising from branching at intermediate nodes above the leaves of the tree)
can comprise any subsets of the labels 1, . . . , L, we are led necessarily to a labelling system
appropriate to the power set 2L, or simply to the well-known system of edge labelling for binary
trees, by binary L-vectors, whereby leaf edges are labelled by powers or decimal equivalents
1, 21, 22, . . . , 2L−1, and the assignments for the remaining edges determined additively (for
an example, see figure 2).

To this end we therefore introduce the following (extended) Fock space (we discuss only
the bosonic case in this paper):

F+ = C ⊕ V ⊕ V ∨ V ⊕ · · · ⊕ V ∨ V ∨ · · · ∨ V + · · · ,
= ⊕∞

n=0(∨nV); (3.22)

V :=
∑

k∈πZ2
L

⊕Vk.

The linear operators which can be used to construct the branching operator are defined in terms
of the so-called creation and annihilation operators on F+. For vk ∈ Vk, v

k∗ ∈ V ∗
k define the

operators a†(vk) : ∨nV → ∨n+1V, a(vk∗) : ∨nV → ∨n−1V by (see, for example, [22])

a†(vk) · vk1 ∨ vk2 ∨ · · · ∨ vkn
= vk ∨ vk1 ∨ vk2 ∨ · · · ∨ vkn

;
4 A similar situation may apply in the antisymmetric case, but we shall not consider it further here.
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a(vk∗) · vk1 ∨ vk2 ∨ · · · ∨ vkn
=

n∑
m=1

δk
km

vk∗(vkm

)
vk1 ∨ · · · v̂km

· · · ∨ vkn

where v̂ denotes the omission of the corresponding vector (the dual action has been formally
extended to be zero on differently labelled spaces, and the corresponding δk

km
factor displayed

explicitly). The operators so defined should then be formally summed to give operators on
the whole of F+ (and by definition ak(v∗) · C = 0), for which we retain the same symbol. In
particular for the unit vectors ekα and their duals ekα we define

a†(ekα) := a
†
kα, a(ekα) := akα. (3.23)

The operators a(u∗), a†(v) fulfil the commutation (ordering) relations a(u∗)a†(v) −
a†(v)a(u∗) ≡ [a(u∗), a†(v)] = u∗(v)11, where 11 is the unit operator on F+; in particular
for the mode operators a

†
kα, akα we have[

akα, a
†
lβ

] = δk
lδ

α
β11. (3.24)

Moreover, if we define the ‘ground’ state to be 11 ∈ C, we have the algebraic means to write
an arbitrary element of the corresponding distinguished basis in Fock space,

ek1α1 ∨ ek2α2 ∨ · · · eknαn
:= a

†
k1α1

· a
†
k2α2

· · · a†
knαn

· 11. (3.25)

In what follows, it will be notationally more compact to introduce the so-called Dirac bra–ket
notation for vectors in V and their duals. Thus formally we write

11 ↔ |0〉, 11∗ ↔ 〈0|;
ekα ↔ a

†
kα|0〉 ≡ |k, α〉, e∗kα ↔ 〈0|akα ≡ 〈k, α|;

ek1α1 ∨ ek2α2 ∨ · · · eknαn
:= a

†
k1α1

· a
†
k2α2

· · · a†
knαn

|0〉 ≡ |k1α1, k2α2, . . . , knαn〉,
where the latter list may include repetition. In this case, the explicit notation

|k1α1,m1; k2α2,m2; . . . krαr ,mr〉 = (
a
†
k1α1

)m1 · (
a
†
k2α2

)m2 · · · (a†
kr αr

)mr |0〉, (3.26)

(corresponding to the so-called number basis) is occasionally mandatory. Finally, we introduce
the natural Cartesian inner product on these state vectors (with the ekα orthonormal in V),
extended to F+ in such a way that each creation and annihilation pair is mutually Hermitian,
and in general

〈k1α1,m1; k2α2,m2; . . . krαr ,mr |l1β1, n1; l2β2, n2; . . . lsβs, ns〉

= δrs

r∏
q=1

δkq lq δαqβq
· δmqnq

mq! (3.27)

Although the general structure will be needed in the formalism below, sample states are in
practice those belonging to a fixed number n of subsystems (for example n = L, the number
of taxa), with (distinct) labelled momenta without multiplicity, of the general form

|P 〉 =
K−1∑

α1,α2,...,αn=0

P α1α2···αn |k1α1, k2α2, . . . , knαn〉. (3.28)

Such state vectors can immediately be attributed to a theoretical probability density for n taxa
provided that the coefficients are positive and that their sum is unity. For technical reasons,
we introduce an auxiliary ‘reservoir’ state (dual or ‘bra’ vector)

(n)〈
| =
K−1∑

α1,α2,...,αn=0

〈k1α1, k2α2, . . . , knαn|
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so that this condition can be written as

(n)〈
|P 〉 = 1 ←→
K−1∑

α1,α2,...,αn=0

P α1α2···αn = 1. (3.29)

In full generality, the auxiliary vector (allowing for multiplicities and summing over different
momenta) becomes

〈
| := 〈0| exp

 ∑
k∈πZ

L
2

K−1∑
α=0

akα

 , (3.30)

or

χ 〈
| = 〈0| exp

 ∑
k∈πZ

L
2

K−1∑
α=0

χkαakα

 , (3.31)

where the latter form is convenient for notational purposes (with the understanding that
χkα → 1).

We shall be concerned with general functions f (such as the probabilities P, and below
with operators built from the creation and annihilation mode operators) which are obtained as
formal sums of terms depending on the ‘momentum’ labels, say fkl.... With the convention
we have adopted (of scaling the k by π ) with any such function we can associate functions
over a dual space x, y · · · ∈ Z

L
2 by a formal Fourier transform. This is of course the discrete

Fourier–Hadamard transformation (the phase factors are simply ±1), and the functions f on
‘configuration’ (position) space are periodic with periods 2a for a ∈ Z

L
2 . In particular for the

constant function in one variable 11k = 1,

δ(x) =
(

1

2L

) ∑
k∈πZ

L
2

ei(k·x), 1 =
∑
x∈Z

L
2

δ(x) e−i(k·xs),

(where δ(x) = δ(x, 0)). More generally,

f (x) :=
(

1

2L

) ∑
k∈πZ

L
2

fk ei(k·x), fk =
∑
x∈Z

L
2

f (x) e−i(k·x). (3.32)

In two variables, we have in turn

f (x, y) :=
(

1

2L

)2 ∑
k∈πZ

L
2

∑
l∈πZ

L
2

fkl ei(k·x+l·y), fkl =
∑
x∈Z

L
2

f (x, y) e−i(k·x+l·y), (3.33)

and generally

f (x + 2a, y + 2b, . . .) = f (x, y, . . .).

As an example of the creation and annihilator formalism, let us give an operator on F+

equivalent to the branching operator δ : V → V ⊗ V introduced above (which has to be
extended case by case to allow for branchings on particular factors of ⊗nV for a particular
tree). Recall that the general form

δ(eα) = �α
βγ eβ ⊗ eγ (3.34)

was subsequently specialized to �α
βγ = δα

βδα
γ on the basis of conditional independence.

Next assume that the copies of V involved are distinguished by different labels k, l, m so
that there is no difference between the above use of ⊗ and the correct ∨ as far as the
symmetric algebra is concerned (below we shall see that the momentum labels are such that
k = l + m). Consider then the operator � = ∑

α,β,γ �α
βγ aαa†

βa†
γ , and its action on a state

V � |p〉 = p0|0〉 + p1|1〉 + · · · + pK−1|K − 1〉 = ∑
ξ pξ |ξ 〉:
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�|p〉 =
∑
α,β,γ

�α
βγ a†

βa†
γ aα

∑
ξ

pξa†
ξ |0〉

=
∑
α,β,γ

�α
βγ a†

βa†
γ

∑
ξ

pξ [aα, a†
ξ [|0〉

=
∑
α,β,γ

�α
βγ a†

βa†
γ pα|0〉

=
∑
α,β,γ

[pα�α
βγ ]|β, γ 〉. (3.35)

Thus, indeed, the requisite branching from the initial ancestral density |p〉 = ∑
α pα|α〉 to the

density for two taxa after branching, with characters shared equally (|P 〉 = ∑
α pα|α, α〉 for

the special choice (2.16) of �, has been effected, and the operator � provides a generalization
of the splitting operator δ of (2.10), (2.17) suitable for representing embeddings of the latter
on individual factors of the tensor product, as in (2.18). In section 6 below, we return to this
operator in the context of a dynamical change model for branching. As will be seen, it needs
to be embellished by edge ‘momentum’ labels in order to generate appropriate phylogenetic
trees, and also to be assigned a time dependence corresponding to the fact that branching
events will occur at specific times in an evolutionary sense. These apparent complications
need to be contrasted with the fact that if the splitting operator δ is used in its original form,
for a specific tree, its action on tensor products must be extended on a case-by-case basis, as in
(2.18). In sections 4, 5 below, we turn to a review of the path integral method for solving the
time evolution of systems described in the operator language, and then apply the technique to
a system of taxa which is ‘free’, that is, evolving without any phylogenetic association, after
having developed the appropriate form for the rate operator of such a system.

4. Review of path integral formalism

In this section, we review briefly the path integral formalism for the representation of the
time development of stochastic processes whose ‘microscopic’ states represent probabilities
of certain ‘particle’ numbers at each time. The aim of the next section will be to apply
the technique to the multilinear representation of taxonomic states developed in section 2
and transcribed into the ‘occupation number’ representation in section 3 above. The task
at hand is to transcribe the abstract occupation number representation (as developed for our
purposes in the previous section) into a formalism of integral operators acting on generating
functions representing the appropriate probability densities. This section closely follows the
presentation of Peliti [18].

For a single system we therefore have microscopic states of the form (see (3.23))
|n〉 = a†n|0〉, with the creation and annihilation operators a† and a being Hermitian conjugates
of each other with

a†|n〉 = |n + 1〉, a|n〉 = |n − 1〉,
〈n|m〉 = n!δmn.

(4.36)

Next we make the transcription from states

|φ〉 =
∞∑

n=0

φn|n〉, 〈φ|ψ〉 =
∞∑

n=0

n!φnψn
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to a space of functions

|φ〉 ↔ φ(z) =
∞∑

n=0

φnz
n,

where the variable ‘z’ is a formal variable if (as in the usual statistical context) φ(z) is meant
as a formal generating function. However, for the present development it is convenient to
allow z to be complex and to regard the φ(z) as analytic functions belonging to a Hilbert
space. In terms of defining path integrals z can be taken to be real, or analytically continued
subject to certain prescribed asymptotic behaviour (possibly together with constraints forcing
its passage through specified points of the complex plane).

Using the elementary identity

n!δmn =
∫

dz zn

(
− d

dz

)m

δ(z) (4.37)

(which can be established by integration by parts) the scalar product (4.36) becomes

〈φ|ψ〉 =
∫

dz φ(z)ψ

(
− d

dz

)
δ(z), or 〈φ|ψ〉 =

∫
dz dζ

2π
φ(z)ψ(iζ ) e−izζ . (4.38)

Associated with the matrix elements Amn = 〈m|A|n〉 of any operator in the number basis is
the integral kernel A(z̄, ζ )

A(z, ζ ) =
∞∑

m,n=0

zm

m!
Amn

ζ n

n!
(4.39)

such that

|ψ〉 = A|φ〉 =
∑
m,n

|m〉〈m|
m!

A
|n〉〈n|

n!
|φ〉

can be expressed via ψ(z) = ∑
ψmzm, with

ψ(z) =
∫

dζ dζ ′

2π
A(z, ζ )φ(iζ ′) e−iζ ζ ′

(4.40)

easily established using the identity (4.37) above. Similarly, the integral kernel of the product
AB of two operators A,B is

AB(z, ζ ) =
∫

dη dη′

2π
A(z, η)B(iη′, ζ ) e−iηη′

. (4.41)

The integral kernelA(z, ζ ) has a natural combinatorial connection to the normal kernel A(z, ζ )

where A is expressed in terms of creation and annihilation operators:

A =
∞∑

m,n=0

a†mAmna
n, define A(z, ζ ) :=

∑
m,n

zmAmnζ
n.

Then there is the simple relationship

A(z, ζ ) = ezζ A(z, ζ ).

Consider the effect of stochastic time evolution on the system. In the linear case, the state
probabilities are assumed to change according to the master equation

d

dt
φn =

∑
m�=n

(rm→nφm − rn→mφn) (4.42)
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where rm→n are the transition rates. It is convenient to define Rnm = rm→n and Rnn =
−∑

m rn→m = −∑
m Rmn so that the time evolution becomes

d

dt
φn =

∑
m

Rnmφm (4.43)

with the understanding that the rate matrix satisfies
∑

n Rnm = 0, for all m, or introducing the
reservoir state 〈
| from above, and regarding R(t) as an operator on state space which can be
time dependent5,

d

dt
|φ(t)〉 = R(t)|φ(t)〉, with 〈
|R(t) = 0. (4.44)

With the above notation we can now develop a path integral representation for the evolution
kernel of the system. Approximate the form of the evolution operator for a small change as
M(t+δt,t) 
 eR(t)δt , and for the evolution operator as a whole as a product of infinitesimal
changes

M(T,0) 
 M(T,T −δt) · M(T −δt,T −2δt) · · · M(2δt,δt) · M(δt,0).

Approximating each of the exponentials by a linear expression, and using the above relation
between normal and integral kernels leads to

M(t+δt,t)(z, ζ ) 
 ezζ (1 + δtR(t)(z, ζ )).

Using this and iterating (4.41) to give a multiple integral representation of this product,
assuming T = Nδt , we have

M(T,0)(z, ζ ) 

∫

M(T,T −δt)(z, η1)
dη1 dη′

1 e−iη1η
′
1

2π
M(T −δt,T −2δt)(η

′
1, η2)

dη2 dη′
2 e−iη2η

′
2

2π
· · · ·

·M(2δt,δt)(η
′
N−2, ηN−1)

dηN−1 dη′
N−1 e−iηN−1η

′
N−1

2π
M(δt,0)(η

′
N−1, ζ )



∫ N−1∏

�=0

dη� dη′
�

2π
· exp

(
N−1∑
�=0

[−iη′
�+1(η�+1 − η�) + δtR(t)(iη′

�+1, η�)]

)
· ezηN

(4.45)

which leads formally in the limit N → ∞ to the path integral representation (cf [18] equations
(2.23), (2.24))

MT (z, ζ ) =
∫

d[η] d[η′] exp

(∫ T

0
dt (−iη′(t)η̇(t) + iRt(iη

′, η)) + zη(T )

)
. (4.46)

Here the 2π factors have been incorporated into the path integral measure, and the integrations
over paths η(t), η′(t) from 0 to T are made with the boundary conditions on each endpoint
given by

η(0) = ζ, iη′(T ) = z. (4.47)

The additional boundary term exp(zη(T )) also arises from the continuum (N → ∞) limit of
the iterated product representation.

It is important to point out that the path integral representation [5, 6, 18] also allows closed
form expressions to be written down for the means (and in principle higher moments) of any
desired observable quantities. This has not only formal significance but also, depending on
the operator, opens an avenue for explicit analytical calculations.

5 This entails dφn/dt = 〈n|R|φ〉/n!, consistent with the resolution of the identity (see (4.38) above).
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5. Evolution kernel for free phylogenetic system

With our review of path integrals for stochastic systems in hand, we now return to the discussion
of phylogenetic systems in the notation of section 3. We concentrate here on the ‘free’ system,
that is, phylogenetic evolution without phylogenetic branching. As we now argue, the normal
kernel of the rate operator can be taken to be quadratic, so that the entire path integral assumes
the Gaussian form and admits a formal steepest descent evaluation. In the next section, we
also introduce interactions along the lines of (3.35) and indicate in simple examples which
indeed reproduce the expected evolution (at least if the rate matrix is time independent) that
this leads to the correct probabilities6.

Transition rates have been discussed in section 2 in the tensor formalism, and in section 4
in introducing the path integral representation. However in the context of section 3, the
appropriate time evolution must be the assignment of a rate operator to each possible edge
‘momentum’ label, k ∈ πZ

L
2 . In contrast to (4.42) then, in which it is assumed that the

rates rm→n and the |m〉, |n〉 refer to differing occupation numbers, we thus construct initially
a number-conserving rate operator, at least inasmuch as the ‘particle number’ operator does
not distinguish between the character types α = 0, 1, . . . , K − 1 which take on the status of
‘internal’ degrees of freedom. Indeed the number operator for edge k is

Nk =
∑

α

a
†
kαakα, such that[

Nk, a
†
kα

] = a
†
kα, [Nk, a

kα] = −akα, (5.48)[
Nk, a

†
kαakβ

] = 0 ∀α, β

This means of course that the rate operator must be bilinear in both creation and annihilation
operators of type k, leading to the second-quantized expression

R =
∑

k∈πZ
L
2

Rk =
∑

k∈πZ
L
2

∑
α,β

a
†
kαRk

α
βakβ. (5.49)

As mentioned in section 3 above, we will be concerned with single occupation numbers for
each momentum mode (for generalizations, see the concluding remarks in section 7 below).
Thus for a general tensor state (3.28) (cf section 2),

|Ṗ 〉 = R|P 〉 =
K−1∑

γ1,γ2,...,γn=0

P γ1γ2···γnR|k1γ1, k2γ2, . . . , knγn〉.

Using the fundamental relation

[
R, a

†
lγ

] =
 ∑

k∈πZ
L
2

∑
α,β

a
†
kαRk

α
βakβ, a

†
lγ


=

∑
k∈πZ

L
2

∑
α,β

a
†
kαRk

α
β

[
akβ, a

†
lγ

]
=

∑
α

a
†
lαRl

α
γ , (5.50)

6 The formalism also applies to the inhomogeneous case (time-dependent rates), provided that the ‘propagator’ is
known (see below).
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where (3.24) has been used, together with (3.26), we find finally as required

|Ṗ 〉 ≡
K−1∑

γ1,γ2,...,γn=0

Ṗ γ1γ2···γn |k1γ1, k2γ2, . . . , knγn〉, where

Ṗ γ1γ2···γn =
∑

γ

(
Rk1

γ1
γ P γγ2···γn + Rk2

γ2
γ P γ1γ ···γn + · · · + Rkn

γn

γ P γ1γ2···γ )
,

(5.51)

whence

P γ1γ2···γn(T ) =
∑
δi

MT
γ1

δ1
MT

γ2
δ2

· · · MT
γn

δn
P δ1δ···δn , where MT k

γi
δi

= (eT Rki )γi
δi
.

(5.52)

It remains to transcribe these results into the path integral notation (4.46) and verify that
the same time evolution is predicted in the ‘free’ (Gaussian) case at least for time-independent
rates. Clearly, for each degree of freedom k, α there is a pair of classical paths η′(t)kα, η(t)kβ

or collectively simply η′(t), η(t). From the fact that the rate operator is expressed by (5.49)
in the normal form, we take

Rt(iη
′, η) =

∑
k,α,β

iη′(t)kαRα
k βη(t)kβ.

In these circumstances the time evolution kernel is particularly simple. Explicitly,

MT (z′, ζ ) =
∫

[dη][dη′] exp

∫ T

0
dt

− i
∑
k,α

η′kα(t)η̇kα(t)

+ i
∑
k,α,β

η′(t)kαRk
α

βη(t)kβ

 +
∑
k,α

z′
kαη(T )kα

 , (5.53)

subject to the appropriate boundary conditions. The integration over all paths η′(t), imposes
a functional-δ constraint on η(t), namely

η̇kα(t) =
∑
k,β

Rα
k βη(t)kβ, whence ηkα(T ) =

∑
k,β

MT
α
kβη(0)kβ (5.54)

(if the transition rates are time independent), where MT k is given by (5.51) above. Thus the
η(t) path integral contribution (up to a normalization constant7) comes from the boundary
term which gives using (4.47)

MT (z′, ζ ) = C exp

(∑
kα

z′
kαMT

α
kβζ kβ

)
(5.55)

for some integration constant C.
For a phylogenetic tensor state (as discussed above, with the unit occupation number in

momentum modes k1, k2, . . . , kn) we set

Pt(z
′
1, z

′
2, . . . , z

′
n) =

K−1∑
α1,α2,...,αn=0

P
α1α2···αn

t z′
k1α1

z′
k2α2

· · · z′
knαn

. (5.56)

7 For this case, the discrete version can be worked out explicitly as a (multi-dimensional) standard Gaussian integral,
and the limit N → ∞ considered. In the present heuristic discussion, we simply assume that the steepest descent
method yields the correct result.
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Denoting the state collectively as Pt(z
′) we then have from (4.40)

PT (z′) =
∫ ∏

k,α

[dζ ′
kα][dζ kα]MT (z′, ζ ) e−i

∑
k,α ζ ′

kαζ kα

P0(iζ
′). (5.57)

Substituting (5.55) it is evident that the ζ integrations impose a functional-δ constraint8

δ(iζ ′ − z′ · MT ), or

PT (z′) = P0(z
′ · MT ), or

PT (z′
1, z

′
2, . . . , z

′
n) =

K−1∑
α1,α2,...,αn=0

P
α1α2···αn

0 z′ · MT k1 k1α1
z′ · MT k2 k2α2

· · · z′ · MT kn knαn
, or

PT (z′
1, z

′
2, . . . , z

′
n) =

K−1∑
α1,α2,...,αn=0

P
α1α2···αn

T z′
k1α1

z′
k2α2

· · · z′
knαn

, where finally

PT
γ1γ2···γn =

∑
δi

MT
γ1

δ1
MT

γ2
δ2

· · · MT
γn

δn
P

δ1δ···δn

0 (5.58)

as derived explicitly above.
It is instructive to rewrite the classical ‘free’ evolution kernel in Fourier transform space.

Recalling the duality between ‘momentum’ labels k, l ∈ πZ2
L and ‘position’ coordinates

x, y ∈ Z2
L, define

η(t)kα =
∑

x

ηα(x, t) e−ik·x, η′(t)kα = 1

2L

∑
y

η′
α(y, t) eik·y,

R(t)αkβ =
∑

z

R(z, t)αβ eik·z, so that (5.53) becomes

MT (z′, ζ ) =
∫

[dη][dη′] exp

(∫ T

0
dt

(
−i

∑
x

η′
α(x, t)η̇α(x, t)

+ i
∑
x,y

η′
α(x, t)R(x − y, t)αβηα(x, t)

)
+

∑
x

z′
α(x)ηα(x, T )

)
. (5.59)

6. Interaction terms and simple examples

In this section, we turn to the complete phylogenetic system incorporating ‘interaction’
terms. In the previous section, we constructed the ‘free’ part of the evolution kernel
MT = ∫

[dη][dη′] exp S0[η, η′] for the phylogenetic ‘fields’ η′
α(x, t), ηα(x, t). Incorporating

interactions, the kernel will acquire additional trilinear terms S1 in the exponent representing
phylogenetic branching events, in such a way that the manifest translation symmetry in
‘position’ space is preserved.

In section 3 above, it was pointed out that the ‘branching operator’ δ which was formally
introduced in (2.17) of section 2 can be represented by a trilinear 2 ← 1 type operator in
Fock space (compare (3.35) above). In the case where there are up to L extant taxonomic
units labelled by binary L-vectors (edge ‘momenta’) to allow for the development of a
particular ancestral binary tree, this vertex interaction must be given definite momentum labels.

8 Setting the arbitrary integration constant to 1.
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The labelling is of course always such that an edge k ∈ Z2
L bifurcates to edges l, m with

k = l + m. Moreover, if the branching is pictured as a dynamical process, the interaction must
be time dependent. The simplest possibility is that the system for L taxa will evolve as a result
of a fixed number M of branchings at times tI , I = 1, . . . , M between times t0 ≡ 0 (from
which time some assumed ancestor(s) evolved) and tM+1 ≡ T (the final time of measurement).
A means of forcing these events is via δ(t − tI ) interactions at times t1 < · · · < tI < · · · < tM
(with 0 ≡ t0 < t1 and tM < tM+1 ≡ T ).

With the above motivations we propose the following ‘interaction’ term S1 for the
full evolution kernel MT = ∫

[dη][dη′] exp S[η, η′] of the phylogenetic system, where
S = S0 + S1 with S0 given by (5.53), (5.59) and

S1 = −
∫ T

0
dt

1

2

∑
I

∑
k,l,m

δ(t − tI )δ(k − l − m)η′(t)lαη′(t)mβ�αβ
γ η(t)kγ

= −
∫ T

0
dt

1

2

∑
I

∑
x

δ(t − tI )η
′(x, t)αη′(x, t)β�αβ

γ η(x, t)γ . (6.60)

As expected, the binary edge labelling is reflected in the manifest translation symmetry of this
expression. With the complete model S0 + S1, the path integral formalism can now be used to
construct (in a perturbation expansion, see below) the evolution kernel for the full system, and
hence transition probabilities for evolution, from any initial state to any final state. In the case
of phylogenetic inference, one is of course interested in evolution from an initial root edge
(at time t = 0) to (at time t = T ) an observed joint probability density for character types of
L taxonomic units.

The model (5.53), (5.59), (6.60) is generic in the sense that an arbitrary (but fixed)
number of branching events M, and any compatible branching processes for binary edges, are
encoded. For connected binary trees, with a single root and L leaves one should of course
admit only M = L − 1 δ-function forcing terms, and adopt standard momentum labelling, for
example, for L ← 1 the root edge may be chosen as the binary L-vector (1, 1, . . . , 1), and the
edges the binary L-vectors (0, 0, . . . , 1), (0, . . . , 1, 0), (0, . . . , 1, 0, 0), · · · (denoted below by
decimal equivalents 	1, 	2, 	4, · · ·). For formal analysis with a specific tree, it may in fact be
combinatorially more powerful to consider all such admissible L ← 1 momentum routing
schemes.

For completeness, we derive in the appendix a formal perturbative expansion [18], and
give explicit Feynman rules for the present model (see table 1). The evolution kernel for
S0 + S1 is rewritten by expanding exp(S1) in a power series, so that the essential ingredients
are specific path integrals of monomials in the phylogenetic path variables, weighted by the
‘free’ part. In turn, these moments can be reduced to functional derivatives of an extended
‘free’ kernel, with respect to ancillary ‘external’ path variables coupled by additional linear
terms to the path variables which are being integrated over. The extended kernel is again
quadratic and can be evaluated as a Gaussian in terms of the formal inverse bilinear form
or propagator with appropriate boundary conditions (see the appendix). Moreover, the
δ-function forcing terms require the derivatives with respect to the external path variables to be
evaluated at the interaction times tI . The probabilities (pattern frequencies corresponding to
all binary L leaf trees with evolution on edges determined by the specific edge rates Rk(t)) so
constructed are identical to the usual likelihood calculation via extended leaf colourations for
example. In the earlier second-quantized version (see [2]), the model was constructed using
the canonical (creation and annihilation operator) formalism, and the interaction term treated
in time-dependent perturbation theory. We emphasize that, although well known, the result in
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Table 1. Feynman rules for evaluating probabilities for L ← 1 scattering in the phylogenetic
branching model. Trees are a combination of labelled graphical elements. Each tree contributes a
term to the total likelihood or pattern frequency. (M�k)αβ is the Markov transition matrix for edge
k and time interval (edge length) �, and �α

ββ ′ is the vertex structure coefficient (≡ δα
βδα

β ′ ). See
the concluding remarks for comments on the role of the group of time reparametrizations.

Element Term

Internal edge

tI

tI′

k

βk

αk

(M∆k k)
αk

βk

Root

0

t1

k0

βk0

αk0

(M∆0k0)
αk0

βk0
p0

βk0

Leaf

tJ

T

ki

βki

αki

(M∆iki )
αki

βki

Vertex

k αk

l
βl

m
βm

Γαk
βlβm

δ(k − l − m)

our formalism follows automatically from the time evolution kernel for the model (effectively,
an appropriate Markov rate operator lifted to the whole Fock space), so that in this sense we
have produced a truly dynamical model for phylogenetic branching processes.

We illustrate our results by reiterating some concrete examples from [2] together with
some further remarks. Consider the case L = 3,M = 2. Nonzero rate constants are chosen
for the root and leaf momenta 	7 = (111), 	1 = (001), 	2 = (010) and 	4 = (100) respectively,
together with a single additional momentum 	6 = (110) associated with the tree T = (	1(	2	4))

of figure 2. Clearly, the contribution to the 3 ← 1 scattering probability (or likelihood)
associated with this tree is, as required, the term arising (in the operator formalism [2]) from
inserting intermediate states in the above with the correct intermediate edge momenta, or (in
the perturbation expansion of the path integral method) from the correct linking of propagators
and vertices at this order (see Feynman rules in the appendix and table 1). Either approach
gives finally

PT
α	1α	2α	4 = 〈α	1	1, α	2	2, α	4	4|PT (T )〉 = 〈α	1	1α	2	2α	4	4|MT (T , 0)|p	7(0)〉

=
∑

M	2
α	2

β	2
M	4

α	4
β	4

�2
β	2β	4

γ	6 · M	6
γ	6

β	6
M	1

α	1
β	1

�1
β	1β	6

β	7 · M	7
β	7

α	7
pα	7 . (6.61)

Here |p	7(0)〉 = ∑
pα	7(0)|α	7	7〉 is the state representing the initial root edge probability density,

and the Mk are the Markov transition matrices for the appropriate edges, namely Mk = e�kRk

with �k the time evolution on edge k,�k = tI ′ − tI where the branching times at the source
and target of edge k are tI and tI ′ .

As indicated by the T subscript in (6.61), the total expression for P(T ) includes terms
additional to the contribution from the selected tree. In fact without additional subtraction
terms (see [2, 5, 6, 18],) the model as formulated is not probability conserving. However,
in phylogenetic inference (for example, maximum likelihood analyses) it is appropriate to
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t0 ≡ 0

t1

t2

t3 ≡ T

111

001 110

001 010 100

Figure 2. Binary labelling scheme for a tree on three leaves T = (	1(	2	4)) with branching events
at intermediate times t1, t2. Nonzero rate constants for the model are chosen for the root and leaf
momenta 	7 = (111), 	1 = (001), 	2 = (010) and 	4 = (100) respectively, together with a single
additional momentum 	6 = (110).

generate contributions from all candidate trees for unknown rates. In the present case, the
additional terms arise of course from other admissible trees. In fact, even if only the rate
constants for edges specific to a selected tree are nonzero, there are still contributions (in the
operator approach) from intermediate states with non-propagating momenta, and these also
arise in the combinatorics of the path integral perturbation expansion (see below). Thus in
addition to (6.61) there are the trees with effective trivalent nodes,

PT	3 =
∑

M	1
α	1

β	1
M	2

α	2
β	2

M ′
	4
α	4

β	4
�β	1β	2β	4

γ	7 · M	7
γ	7

β	7
pβ	7 (6.62)

PT	3 =
∑

M	1
α	1

β	1
M ′

	2
α	2

β	2
M	4

α	4
β	4

�β	1β	2β	4
γ	7 · M	7

γ	7
β	7

pβ	7 (6.63)

shown in figure 3. The trivalency comes by deleting edges for rates with Rk = 0 and re-joining
the target and source nodes such that there is an effective 3-point vertex corresponding to a
branching operator or an interaction vertex structure coefficient with components (compare
(3.34)) �α

βγ δ = δα
βδα

γ δα
δ . (Such an effective interaction term might also be viewed as the

result of directly integrating out the ηk, η′
k variables corresponding to Rk = 0). For the tree

in question, the non-propagating momenta are 	3 = (011) and 	5 = (101) corresponding to the
trees T	3 and T	5 respectively. The terms differ from one another because the edge evolution
times T − t1 and T − t2 are distributed differently over the Markov matrices M	1,M	2 and M	4
as indicated by the ′ in (6.62), (6.63) and the differing edge lengths in figure 3. Of course, it
is always possible to regard these terms as vestigial contributions from standard binary trees
with very short edges. In fact, since the usual counting relation between edges and leaves for
binary trees obviously does not hold for the trivalent trees, the formal introduction of a scaling
parameter would serve to distinguish these and similar noncanonical tree diagrams.

7. Conclusions and discussion

In this paper and the previous work [2], we have proposed a transcription of phylogenetic
branching processes into the language of a stochastic dynamical system evolving according
to an appropriate Markov rate operator on a suitably extended ‘state’ space. The analogy
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t1

t2

111

001 010

100

t1

t2

111

001

010

100

Figure 3. Additional effective non-binary trees T	3 and T	5 contributing to the probability in the

phylogenetic branching model for the three leaf case. Non-propagating momenta 	3 = (011)

and 	5 = (101) produced by the branching interaction term at t1 cause effective trivalent vertices
with different evolution times T − t1, T − t2 on long and short leaf edges.

with statistical and particle physics is that the ‘particles’ in the phylogenetic context are the
individual taxonomic units, and it is these which evolve in type and number (as in Markov
models of reaction diffusion or birth–death processes, or in relativistic particle scattering) in
the course of evolution. In [2] a conventional operator approach was taken, whereas in the
present work the path integral formulation introduces to phylogenetics the familiar physical
notions of ‘paths’ and ‘fields’ (over a discrete lattice). Our treatment including ‘interactions’
representing branching events, including explicit Feynman rules (table 1 in the appendix)
establishes the equivalence of the path integral formulation to the operator version [2] via
standard perturbation theory as the appropriate tool for completing the transcription.

The path integral language allows a range of techniques known in the context of the
analysis of physical systems [5, 6, 18] to be deployed for phylogenetics. One immediate point
is the relationship between the formulation of transition probabilities in ‘momentum’ space
versus the dual ‘position’ space—standard in condensed matter systems, and also known in
phylogenetics in the literature on transform techniques for phylogenetic inference involving
the discrete Fourier Hadamard transformation, in principle to derive an edge rate spectrum for
a phylogenetic tree directly from an observed data set of pattern probabilities [12, 19, 26]. In
the present framework, momentum conservation is a reflection of translation invariance on the
underlying discrete lattice.

General considerations for the path integral formulation include the further application of
symmetry principles in various ways. For example, continuous Lie symmetry group actions
on the path variables (phylogenetic fields), for example η̄ → η̄ ·U, η → U ·η can be analysed
for their effect on the dependence of the time evolution kernel on the various rate and time
parameters of the model. This has been pursued in [23] (in the explicit tensor description) for
the well-known Kimura 3ST model for four characters [15] where it was noted that the rate and
branching operators intertwine the action of a U(1)×U(1)×U(1) (or C

× ×C
× ×C

×) group
so that the resultant group reduction from representations of SU(4) (or SL(4)) is intimately
related to the properties of this model (it is well known that the Kimura 3ST model and the
related 2P model do belong to the class of discrete colour group models [12, 21]). More
generally, the Lie symmetry approach allows rate models to be considered, in principle, in
terms of a hierarchy of symmetry-breaking terms. For example, in molecular phylogenetics
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at the protein mutation level, suitable symmetry groups would be those advocated recently in
relation to the possible group-theoretical origins of the genetic code itself (see, for example,
[1, 27]).

A deeper aspect of the branching model in the path integral formulation is the role of time
reparametrizations, t → τ(t), in connection with notions of the ‘molecular clock’. Given that

dt = dτ
dt

dτ
, δ(t − tI ) dt = δ(τ − τI )

|dt/dτ |
dt

dτ
dτ,

then clearly the evolution kernel has the following covariance property,

MT (tI , Rk(t)) = MT (τI , R
′
k(τ )), where R′

k(τ ) = Rk(t) · dt

dτ
and τI = τ(tI )

(7.64)

(it is assumed that dt/dτ > 0, in particular τ(t) is not orientation reversing). This is precisely
the reason that, in standard probability approaches (see, for example, [12]), ‘dynamical’
considerations involving explicit time dependence can be absent—standard calculations
require only the combinatorics of the tree (which is encoded in the present models via the
branching times tI and the choice of momenta for which rates are nonzero). However, as has
been mentioned already, there is good reason to formulate the branching process temporally
as presented here. In order for generalizations of the δ-function forcing interaction terms
to preserve the time reparametrization covariance (7.64), the introduction of an auxiliary
phylogenetic ‘gauge’ field would be mandatory (as in some proper time formulations of
relativistic field equations).

As an illustration of this dynamical perspective, suppose now that for some edge
momentum k∗ the edge rate can be written as proportional to some standard rate matrix,

Rk∗(t) = λ∗(t)R∗. (7.65)

Then it is possible to define a phylogenetic ‘proper time’ τ ∗ (implicitly) as a function t, by
solving the first order equation

dt

dτ ∗ = 1

λ∗(t)

together with some suitable initial condition, for example τ ∗
I = τ ∗(tI ) ≡ tI where tI is

the branching time at the source node of edge k∗. Then, with respect to this proper time,
the edge rate Rk∗(τ ∗) is by definition constant, and equal to R∗. By extension, if there
exists a distinguished tree path P∗ from the root to some leaf node, along which all edge
rate matrices possess the above multiplier property (7.65), a global phylogenetic proper
time τ ∗ exists for that tree path, with the rate matrices piecewise constant (constant along
each edge). Finally, such a tree path phylogenetic proper time may always be adjusted to
coincide with geological or archaeological time determinations at certain points by piecewise
linear affine transformation(s) of the form τ ∗ → aτ ∗ + b (which may be edge dependent
along the distinguished path) without compromising the above arguments. An extreme
example of this situation is of course the case of a stationary Markov process, wherein
each rate matrix is (proportional to) a given fixed matrix R, and the (weighted) sum of
elapsed times along each tree path from the root to a leaf node, is constant—in this case
a molecular clock exists in the strongest sense. As usual however, it is still impossible to
disentangle evolution occurring on some edges with standard strength for time �t , from
evolution occurring over time λ�t with scaled rates (λ−1)R. In general, conclusions drawn
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from studies of ‘time-dependent’ rate matrices should always be treated with caution because
of reparametrization covariance. Related considerations for general Kolmogorov equations,
related to non-stationary finite Markov processes, but without explicit recognition of the role
of the group of time reparametrizations (diffeomorphisms), have been given in [20]; for a
discussion of general time-dependent Markov processes, see [28]. The ‘intrinsic time’ of
[20] is nothing but the above phylogenetic ‘proper time’ τ . This, in turn—-interpreted as a
gauge fixing choice—is essentially the Teichmüller parameter for the configuration space of
an implicit ‘einbein’ path variable which carries gauge transformations associated with the
group of time reparametrizations on the interval [0, T ] (see, for example, [11]).

Within the present reformulation it is also possible to examine generalizations which may
not be apparent in other contexts. An example would be analytical or at least systematic
possibilities for the examination of the behaviour random trees in the limit of very large
numbers of leaves, or of random branching events, for the purpose of comparative evolution
studies. A further extension would be to include population processes such as mutation–
selection effects into the models.

A final potentially important analytical tool is the fact that (as mentioned above) the closed
form expression for the scattering probabilities represented by the evolution kernel generates
contributions from all candidate trees for a given number of leaves. It is clear from our
presentation that the characteristics of a specific tree can be encoded via the choice of nonzero
rate constants for particular edge momenta, and that there may be several equivalent such
assignments amongst the 2L admissible binary L-vectors. The exploitation of the interrelations
of these assignments might give insights into the derivation of ‘invariants’ (in this case for
the combinatorics of trees, rather than for differential topology, as in the case of topological
quantum field theory) which could provide useful constraints in phylogenetic inference and
maximum likelihood ‘optimal’ tree searches. Indeed, in maximum likelihood approaches
themselves, it may be useful to have a formal representation of all contributing terms, without
the need for explicit tree enumerations.
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Appendix. Feynman rules for phylogenetic branching models

In this appendix, we develop systematic expansion methods in the form of Feynman rules, for
the calculation of the time evolution of state probabilities in the model given by (5.53) and
(5.59). This establishes that the model is formally equivalent to the standard prescription for
calculating likelihood functions for phylogenetic trees, and provides the justification for the
more qualitative discussion of the free and interacting cases given in sections 5 and 6 above.

Firstly note that the path integral representation of the (free) time evolution kernel
M◦

T (z, ζ ), (4.46), (5.53) and (5.59) can be written in various equivalent symmetrized forms
emphasizing the role of the boundary conditions, namely (using the generic form (4.46) to
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suppress affixes)9,∫ T

0
dt (−iη′(t)η̇(t) + Rt(iη

′, η)) + zη(T ) =
∫ T

0
dt (+iη̇′(t)η(t) + Rt(iη

′, η)) + iη′(0)ζ

=
∫ T

0
dt

(
−i

1

2
(η′(t)η̇(t) − η̇′(t)η(t)) + Rt(iη

′, η)

)
+

1

2
zη(T ) +

1

2
iη′(0)ζ.

(A.1)

Now consider the complete time evolution kernel extended by some ancillary path variables
iξ ′(t), ξ(t),

M̃T :=
∫

d[η′] d[η] exp
(
iη′ · K · η + iξ ′ · η + iη′ · ξ

)
exp(+zη(T )) exp S1[iη′, η], (A.2)

such that M̃T

ξ ′=0=ξ−→ MT . The notation ‘·’ in the exponential represents a definite integral of
the occurring path variables with respect to time from t = 0 to t = T , respecting of course the
boundary conditions derived earlier, (4.47).10 The notation ‘iη′ · K · η’ refers to the quadratic
part of the integrand, in this case in the first of the forms (A.1). Finally, an additional (for
the moment generic) ‘interaction’ term is included, with S1 being the integral of the normal
kernel.

The aim is to consider the convolution of M̃T with the initial state probability generating
function, in such a way that the expansion of the exponential of the interaction in a power
series, together with the final state matrix element, and the folding with respect to the initial
state probability tensor, are all reduced to formal derivatives with respect to the ancillary
variables, acting on the expression for the ‘free’ kernel,

M̃◦
T (z, ζ ) :=

∫
d[η′] d[η] exp

(
iη′ · K · η + iξ ′ · η + iη′ · ξ

)
exp(+zη(T )). (A.3)

To this end, consider the complete generating function for the final probability state vector
(compare (4.40)),

PT (z) =
∫

dζ dζ ′M̃T (z, ζ ) e−iζ ′ζ P0(ζ
′)
∣∣∣∣
ξ≡ξ ′≡0

. (A.4)

The additional S1[η, iη′] interaction term in the exponential can be regarded, after a power
series expansion, as a series of moments evaluated on the free kernel, so that

PT (z) = eS1[ ∂

∂iξ ′ , ∂
∂ξ

] ·
∫

dζ dζ ′M̃◦
T (z, ζ ) e−iζ ′ζ P0(ζ

′)
∣∣∣∣
ξ≡ξ ′≡0

. (A.5)

Also if we are interested in a final state consisting of L taxonomic units, the relevant probability
component is by definition the generating function derivative with respect to the appropriate

9 Using either of the second two forms in the discussion following (5.53) leads to equivalent solutions, for example,

iη′
kα(T ) = iη′

kβ(0)(MkT
−1)βα, and then iη′(0)ζ = iη′

kβ(0)(MkT )βαζ α

as before.
10 Bearing in mind that the additional boundary contributions are for specific times, and are thus products, not
integrals.
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z variables; for example,

P
α1k1···αLkL

T = ∂

∂zα1k1

· · · ∂

∂zαLkL

PT (z)

∣∣∣∣
z≡0

. (A.6)

From the dependence of the kernel on z (the first form in (A.1)), however, the derivatives
merely bring down factors of η(T ) with appropriate labels, which in turn are equivalent to the
corresponding differentiations with respect to iξ ′:

P
α1k1···αLkL

T = exp S1

[
∂

∂iξ ′ ,
∂

∂ξ

]
∂

∂iξ ′
α1k1

· · · ∂

∂iξ ′
αLkL

·
∫

dζ dζ ′M̃T (z, ζ ) e−iζ ′ζ P0(iζ
′)
∣∣∣∣
z≡ξ≡ξ ′=0

. (A.7)

Finally, from the second form of the kernel in (A.1), the path integral over ζ will enforce a
δ-function constraint identifying iζ ′ with iη′(0), or partial differentiation with respect to the
appropriate components of ξ :

P
α1k1···αLkL

T = exp S1

[
∂

∂iξ ′ ,
∂

∂ξ

]
· ∂

∂iξ ′
α1k1

(T )
· ∂

∂iξ ′
αLkL

(T )

·P0

(
∂

∂ξ(0)

)
· M̃◦

T (z, ζ )

∣∣∣∣
z≡ξ≡ξ ′=0

. (A.8)

Turning to the evaluation of M̃◦
T (z, ζ ) itself, note that the quadratic part of the integrand

in (A.2) can be written as∫ ∫ T

0
dt dt ′ iη′(t ′) · K(t, t ′)η(t) =

∫ ∫ T

0
dt dt ′ iη′(t)(−∂tδ(t − t ′) + Rδ(t − t ′))η(t ′).

(A.9)

The formal completion of the square

iη′ · K · η + iξ ′ · η + iη′ · ξ = i(η′ + ξ ′K−1) · K · (η + K−1ξ) − iξ ′ · K−1 · ξ (A.10)

suggests integrating out the resulting Gaussian after the change of variables iη′ → i(η′ +
ξ ′K−1), η → (η + K−1ξ) (which has unit Jacobian), leaving the expression

M̃◦
T (z, ζ ) = exp(−iξ ′ · K−1 · ξ) (A.11)

up to normalization factors (including det K−1) and boundary contributions. However, the
explicit dependence on z and ζ (which is to be integrated over in (A.4), (A.5)) has been
circumvented by the device of formally introducing appropriate differentiations with respect
to the ξ ′, ξ variables, so that (A.11) normalized with reference to the non-interacting case, is
sufficient provided that K−1 is calculable. For the case of R constant this is easily checked
to be

K−1(t, t ′) = −θ(t − t ′) e(t−t ′)R (A.12)

subject to K−1(t, t ′) = 0 if t � t ′.
Consider then the non-interacting case (A.8), (A.12) with S1 ≡ 0. Clearly, the necessity

to set the ancillary variables equal to zero after differentiation means that the only viable initial
probability state vector is one also with L extant taxa, and with identical momentum labels.
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Explicitly, we have

P
α1k1···αLkL

T = ∂

∂iξ ′
α1k1

(T )
· · · ∂

∂iξ ′
αLkL

(T )
P

β1k1···βLkL

0

∂

∂ξβ1k1(0)
· · · ∂

∂ξβLkL(0)

× exp
∫ ∫ T

0
dt dt ′θ(t − t ′)

∑
γ,δ,m

iξ ′
γ m(t)M

γ

(t−t ′)mδ
ξ δm(t ′)

∣∣∣∣
z≡ξ≡ξ ′=0

. (A.13)

Differentiations with respect to iξ ′, ξ with the corresponding momentum labels must be paired,
leading finally to

P
α1k1···αLkL

T =
∑
δi

MT k1
α1

β1
MT k2

α2
β2

· · · MT kL

αn

βn
P

β1k1···βLkL

0 (A.14)

as was derived informally in (5.52), (5.58).
Turning to the interacting case, we are interested in the final state probability for L

taxonomic units, assigned momenta k1, k2, . . . , kL say, arising from an initial state with one
taxon (the root) with momentum k0, thus the probability component for an L ← 1 scattering
process in the model. Once again, the necessity to set the ancillary variables equal to zero after
differentiation selects nonvanishing contributions corresponding to precisely degree L − 1 in
the power series expansion of the exponential of the interaction term S1

[
∂

∂iξ ′ ,
∂
∂ξ

]
(see (A.8)

and (6.60)):

P
α1k1···αLkL

T = 1

(L − 1)!

[
−

∫ T

0
dt

(−i)3

2

∑
I

∑
k,l,m

δ(t − tI )δ(k − l − m)
∂

∂ξ lα(t)

× ∂

∂ξmβ(t)
�αβ

γ

∂

∂ξ ′
mγ (t)

](L−1)

· ∂

∂iξ ′
α1k1

(T )
· · · ∂

∂iξ ′
αLkL

(T )
· P

β0k0
0

∂

∂ξβ0k0(0)

· exp −
∫ ∫ T

0
dt dt ′θ(t − t ′)

∑
γ,δ,m

iξ ′
γ m(t)M

γ

(t−t ′)mδ
ξ δm(t ′)

∣∣∣∣∣∣
z≡ξ≡ξ ′=0

.

(A.15)

It is convenient at this stage also to choose canonical momenta (binary L-vectors, with a
scaling of π understood) k0 = (1, 1, . . . , 1) for the root, and k1 = (0, 0, . . . , 1), k2 =
(0, . . . , 1, 0), . . . , k2 = (0, . . . , 0, 1) for the edges (or decimal equivalents 	1, 	2, 	4, . . .). For
formal analysis with a specific tree, it may in fact be more powerful to consider all such
admissible L ← 1 momentum routing schemes; however, for combinatorial purposes any
fixed assignment is sufficient.

For L = 2 there is only one interaction, whose time is forced to be t = t1. Performing
the differentiation of the exponential of the free kernel with respect to ξβ0k0(0) gives

P
α1k1α2k2
T =

[
+

1

2

∑
k,l,m

δ(k − l − m)
∂

∂ξ lα(t1)

∂

∂ξmβ(t1)
�αβ

γ

∂

∂iξ ′
kγ (t1)

]
· ∂

∂iξ ′
α1k1

(T )

× ∂

∂iξ ′
α2k2

(T )
·
[

+
∫ T

0
dt iξ ′

λk0
(t)Mtk0

λ
β0

]
P

β0k0
0

· exp +

∫ ∫ T

0
dt dt ′ θ(t − t ′)

∑
γ,δ,m

iξ ′
ρm(t)(M(t−t ′)m)ρσ ξσm(t ′)

∣∣∣∣∣∣
ξ≡0≡ξ ′
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and carrying out the two remaining ξ differentiations leads to

P
α1k1α2k2
T =

[
+

1

2

∑
k,l,m

δ(k − l − m)�αβ
γ

∂

∂iξ ′
α1k1

(T )

∂

∂iξ ′
α2k2

(T )

∂

∂iξ ′
kγ (t1)

]

·
[

+
∫ T

t1

dt iξ ′
λl(t)Mt l

λ
α

] [
+

∫ T

t1

dt iξ ′
µm(t)Mtm

µ
β

] [
+

∫ T

0
dt iξ ′

νk0
(t)Mtk0

ν
β0

]

×P
β0k0
0 · exp +

∫ ∫ T

0
dt dt ′θ(t − t ′)

∑
γ,δ,m

iξ ′
ρm(t)M(t−t ′)m

ρ
σ ξσm(t ′)

∣∣∣∣∣∣
ξ≡0≡ξ ′

.

For a nonzero result, the remaining ξ ′(t1) and two ξ ′(T ) differentiations can only be applied
to the terms standing in front of the exponential. Moreover, the implicit θ terms require the
ξ ′(t1) differentiation to be applied only to the k0 integral, thus fixing k = k0. Finally, since
k0 = k1 + k2 = l + m there are two equivalent ways to apply the remaining differentiations
(cancelling the symmetry factor 1

2 in the interaction term) giving finally

P
α1k1α2k2
T = �αβ

γ

(
M(T −t1)k1

)
α1

α

(
M(T −t1)k2

)
α2

β

(
Mt1k0

)
γ

β0P
β0k0
0 . (A.16)

In the general case, systematic diagrammatical rules (Feynman rules) can easily be ascribed
and tabulated for the evaluation of (A.15). On the basis of the above L = 2 (first order)
case and similar considerations for L = 3 (second order), all possible probability component
contributions for L taxa are constructed from the matrix element for L ← 1 scattering as
follows.

Feynman rules for phylogenetic trees

(1) Diagrams consist of 2L−1 directed edges, L−1 vertices with internal nodes, one external
root and L leaf nodes.

(2) To each element is assigned character and momentum labels as in table 1.
(3) Specifically, root and leaf edge momenta are assigned canonical binary L-vectors (see the

text); momentum conservation between ingoing and outgoing edge momenta is imposed.
(4) Vertices (internal nodes) are assigned interaction times ordered t1 < t2 < · · · tL−1.
(5) The root node is assigned time t = 0 = t0, and the leaves are assigned time t = T = tL.

To these labelled diagrammatical elements, the following algebraic terms are associated:

(1) For each directed edge, a Markov transition matrix for time interval � = (tI ′ − tI ), 0 �
I � L − 1 between the target and source nodes, and for its assigned edge momentum,
and matrix element determined by the source and target character labels assigned (see
table 1).

(2) To each vertex, an appropriate component of the � structure coefficient (see table 1).
(3) Consistent combinations of these elements, summed over all internal momenta and

character indices, with valid momentum conservation, correspond to contributions from
all possible labelled L leaf binary trees.

Using these rules, likelihoods can thus be written down autonomously and
diagrammatically, without reference to the path integral context; however, as stressed in the
main text, the utility of the path integral formulation is precisely to provide a self-contained
prescription for them without the explicit need to enumerate trees.



Path integral formulation and Feynman rules for phylogenetic branching models 9647

References

[1] Bashford J D and Jarvis P D 2000 The genetic code as a periodic table: algebraic aspects Biosystems 57 147–61
[2] Bashford J D and Jarvis P D 2001 Quantum field theory and phylogenetic branching J. Phys. A: Math. Gen. 34

L703–L707
[3] Chang J T 1996 Full reconstruction of Markov models on evolutionary trees: identifiability and consistency

Math. Biosci. 137 51–73
[4] Diaconis P 1985 Group Representations in Probability and Statistics (Lecture Notes—Monograph Series

vol 11) ed S Shastri et al (Cambridge, MA: Institute of Mathematical Statistics, Harvard University)
[5] Doi M 1976 Second quantization representation for classical many-particle system J. Phys. A: Math. Gen. 9

1465–77
[6] Doi M 1976 Stochastic theory of diffusion-controlled reaction J. Phys. A: Math. Gen. 9 1479–95
[7] Farris J S 1973 A probability model for inferring evolutionary trees Syst. Zool. 22 250–6
[8] Felsenstein J 1981 Evolutionary trees from DNA sequences: a maximum likelihood approach J. Mol. Evol. 17

368–76
[9] Felsenstein J 2004 Inferring Phylogenies (Sunderland, MA: Sinauer Associates)

[10] Jarvis P D, Sumner J G and Bashford J D 2005 Markov group invariants, plethysms and phylogenetic branching
in preparation

[11] Govaerts J 1991 Hamiltonian Quantisation and Constrained Dynamics (Leuven Notes in Mathematical and
Theoretical Physics, Series B, Theoretical Particle Physics vol 4) (Leuven: Leuven University Press)

[12] Steel M, Hendy M D and Penny D 1998 Reconstructing phylogenies from nucleotide pattern probabilities:
a survey and some new results Discrete Appl. Math. 88 367–96

[13] Alcaraz F C, Droz M, Henkel M and Rittenberg V 1994 Reaction–diffusion processes, critical dynamics, and
quantum chains Ann. Phys., NY 230 250–302

[14] Johnson J E 1985 Markov-type Lie groups in GL(n, R) J. Math. Phys. 26 252–7
[15] Kimura M 1981 Estimation of evolutionary distances between homologous nucleotide sequences Proc. Natl

Acad. Sci. USA 78 454–8
[16] Rodriguez F, Oliver J L, Marin A and Medina J R 1990 The general stochastic model of nucleotide substitution

J. Theor. Biol. 142 485–501
[17] McCullagh P 1987 Tensor Methods in Statistics (London: Chapman and Hall)
[18] Peliti L 1985 Path integral approach to birth–death processes on a lattice J. Physique 46 1469–83
[19] Hendy M D, Penny D and Steel M A 1994 Discrete Fourier analysis for evolutionary trees Proc. Natl Acad. Sci.

USA 3339–43
[20] Goodman Gerald S 1970 An intrinsic time for non-stationary finite Markov chains Z. Wahrscheinlichkeitstheor.

Verwandte Geb. 16 165–80
[21] Semple C and Steel M 2003 Phylogenetics (Oxford: Oxford University Press)
[22] Sudbery A 1986 Quantum Mechanics and the Particles of Nature: an Outline for Mathematicians (Cambridge:

Cambridge University Press)
[23] Bashford J D, Jarvis P D, Sumner J G and Steel M A 2004 U(1) × U(1) × U(1) symmetry of the Kimura 3ST

model and phylogenetic branching processes J. Phys. A: Math. Gen. 37 L1–L9
[24] Sumner J G and Jarvis P D 2004 Entanglement invariants and phylogenetic branching J. Math. Biol. 51 18–36

(Preprint q-bio.PE/0402007)
[25] Sumner J G and Jarvis P D 2005 Using the tangle: an improved method for construction of phylogenetic distance

matrices, in preparation
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